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Abstract

Type 2 diabetes mellitus (T2DM) is a chronic disease that
usually results in multiple complications. Early identification
of individuals at risk for complications after being diagnosed
with T2DM is of significant clinical value. In this paper, we
present a new data-driven predictive approach to predict when
a patient will develop complications after the initial T2DM
diagnosis. We propose a novel survival analysis method to
model the time-to-event of T2DM complications designed
to simultaneously achieve two important metrics: 1) accurate
prediction of event times, and 2) good ranking of the relative
risks of two patients. Moreover, to better capture the correla-
tions of time-to-events of the multiple complications, we fur-
ther develop a multi-task version of the survival model. To as-
sess the performance of these approaches, we perform exten-
sive experiments on patient level data extracted from a large
electronic health record claims database. The results show
that our new proposed survival analysis approach consistently
outperforms traditional survival models and demonstrate the
effectiveness of the multi-task framework over modeling each
complication independently.

Introduction

Type 2 diabetes mellitus (T2DM) is a chronic disease
that affects almost half a billion people around the
globe (World Health Organization 2016). It is character-
ized by hyperglycemia— abnormally elevated blood glu-
cose (blood sugar) levels, and is almost always associated
with a number of complications (Forbes and Cooper 2013).
Over time, the chronic elevation of blood glucose levels
caused by T2DM leads to blood vessel damage which in
turn leads to associated complications, including kidney
failure, blindness, stroke, heart attack, and in severe cases
even death. T2DM management requires continuous medi-
cal care with multifactorial risk-reduction strategies beyond
glycemic control (American Diabetes Association and oth-
ers 2013). Early prediction of T2DM complications is criti-
cal for healthcare professionals to appropriately adapt treat-
ment plans for patients.

The recent abundance of the electronic health records
(EHRs) has provided an unprecedented opportunity to apply
predictive analytics to improve T2DM management. In this
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paper, we study the early prediction of T2DM complications
from historical EHR records: When will a patient develop
complications after the initial T2DM diagnosis? Given the
EHR records of two patients, which patient is more likely
to develop complications? In the literature, EHRs have been
applied to disease onset prediction (Ng et al. 2016; Raza-
vian et al. 2015), patient stratification (Wang et al. 2015;
Chen et al. 2016), readmission prediction (He et al. 2014),
and mortality prediction (Tabak et al. 2013). However, there
are unique characteristics and challenges to the problem of
T2DM complications time-to-event prediction.

One of the main challenges for such time-to-event pre-
diction problems is the existence of censored data in which
events of interest are unobserved. Events of interest may not
be observed due to the limited duration of the study period
or due to losing track of patients during the observation pe-
riod. As such, predictive models based on standard machine
learning approaches, which usually optimize a loss function,
cannot be directly applied to analyze censored longitudinal
data. Survival analysis (Cox 1972; Miller Jr 2011) is a class
of widely used statistical tools to model time-to-event cen-
sored data and thus can be adapted to model T2DM compli-
cation events. However, traditional survival analysis models
suffer from several limitations. The popular Cox model (Cox
1972) does not directly model event probability; instead,
it maximizes a partial likelihood objective, which depends
only on the relative ordering of the survival time of indi-
viduals, not on their actual values. Parametric survival mod-
els (Lawless 1998; Mittal et al. 2013) provide another popu-
lar alternative. These methods assume that the baseline haz-
ard function follows some distribution, such as Exponential,
Weibull or Log-normal. However, the distribution may not
be flexible enough to capture the complex event patterns
observed in practice. A second challenge stems from the
need to effectively capture the correlations between multiple
T2DM complications. Considering that the different compli-
cations are manifestations of a common underlying condi-
tion — hyperglycemia, modeling complications as indepen-
dent of one another will lead to suboptimal models.

To address these challenges, we present a data-driven ap-
proach to predict when a patient will develop complica-
tion(s) after the initial T2DM diagnosis. Our contributions
include a novel survival analysis approach, RankSvx, to
model time-to-event of T2DM complications. RankSvx si-



Table 1: Mathematical Notations

Symbol Description

N, (i,7) number and indices of patients
M,k number and index of T2DM complications

tx;  time of event of patient ¢ for complication k
indicator of censoring for event tx; with cx; = 1
means observed and ci; = 0 means censoring
X; X; is the explanatory covariates for patient ¢
w, is the coefficients for complication k;
W = [wy,..., W] is the matrix of coefficients

Cki

G = order graph with vertices V represents patients and

(V,€) edge £(i, j) indicates event time order T; < T}.
Q matrix of relatedness between complications
2y  matrix of prior knowledge about risk association

multaneously optimizes two objective functions: a regres-
sion function that models the event times of the observed
events, and a ranking function that models the relative risks
of both the observed and censored events. As a result, the
proposed survival approach has the advantage of simultane-
ously achieving two important desiderata: accurate predic-
tion of event times, as well as an accurate ranking of the
relative risks of two patients. Moreover, to better capture the
correlations of time-to-events of multiple complications, we
further develop a multi-task version of the survival model.
The multi-task model allows us to not only capture the relat-
edness between different complications but also incorporate
domain knowledge as prior information.

To assess the performance of our proposed innovations,
we perform extensive experiments on patient level data ex-
tracted from a large electronic health record claims database.
The results show that our new proposed survival analysis ap-
proach consistently outperforms traditional survival models
and demonstrate the effectiveness of the multi-task frame-
work over modeling each complication independently.

Problem Definition

Our goal is to build an effective data-driven predictive ap-
proach to predict when a patient will develop complica-
tion(s) after the initial T2DM diagnosis. Specifically, for
patient 7 we observe a set of D risk factors, denoted as
X; = [Ti1,Ti2,...,2;p] ", for an observation window up
until the patient was diagnosed with T2DM. Let there be M
complications in consideration indexed by k € {1,--- , M }.
We use tj; to represent the time when patient ¢ develops
complication k. We use the indicator cg; to represent the
censoring of the event ty; where cy; = 1 means observed
and ci; = 0 means censored. We aim to build a predictive
model f(tx;|©,x;) to predict when patient i will develop
complication k. Table 1 shows some important mathemati-
cal notations used in this paper.

Multi-task Survival Analysis to Model T2DM
Complication Events

In this section, we present our multi-task survival analysis to
model time-to-event of T2DM complications.

Figure 1: Illustration of event order graph in time-to-
event modeling. Filled vertex indicates an observed event
and an empty circle denotes a censored observation. An
arrowed edge £(i, j) between two nodes indicates event
time order T; < T). Note that all nodes connected to an
observed event node ¢ correspond to the risk set R; for
patient 7 in the Cox model.

Modeling Single T2DM Complication Events

Before proceeding to consider all the complications, we first
look at how to model a single complication event, namely
the single-task learning paradigm.

One of the main challenges in survival modeling is the
existence of censored data in which the events of interests
are not observed due to either the time limitation of the study
period or to losing track of the patient during the observation
period. Due to the uncertainty caused by the censored data,
we decompose the objective function into two parts:

Lobs (ti, f(xi0)) 4+ (1 — @) Leen (ti, f(x:]O)) + g(©). (1)

The first term L (ti, f(xl|9)) models the observed
event, and the loss function can be any used in stan-
dard generalized regression models. The second term
Lecen (ti, f (x2|@)) models the censored data and will be
discussed in detail in the following section. The weight
term « balances the two loss functions. Finally, g(©) is a
regularization term that controls the model complexity.

Modeling censored data as a ranking task. We cast the
modeling of censored data as a ranking problem, where the
task is to order the event times. First, survival analysis, rep-
resented by the Cox model, can be regarded as the modeling
of the event order due to the introduction of censored data. It
answers the order question: “which one of patients ¢ and j is
more likely to develop a disease?”. Raykar et al. (Raykar
et al. 2007) show that Cox’s partial likelihood is a lower
bound of the concordance index (CI), which is one of the
most commonly used metrics for survival models. Second,
we aim to use the ranking to compliment the modeling of ac-
tual event time since the first term of our objective function
as shown in Equation (1) already models the event times.
We construct an event order graph G = (V, £) as shown
in Fig. 1. The set of vertices V represents all the patients,
where each filled vertex indicates an observed event time,
while an empty circle denotes a censored observation. An ar-
rowed edge (i, j) between two nodes indicates event time
order T; < T;. Note that all nodes connected to an observed
event node ¢ correspond to the risk set I; for patient 7 in
the Cox model. We aim to correctly rank the relative risks
of two patients, which is equal to maximizing the probabil-
ity of all pairs of patients whose predicted event times are
correctly ordered among all patients that can actually be or-



dered. Then we maximize following likelihood
log [ ] Pr(T; > Ti|©) = log [ ] Pr [ (x;1©) — f(xil©)].

@)
i i

There are multiple choices of functions (e.g., Hinge, Sig-
moid and exponential) to model the order between event or-
der T; > T;. We follow (Raykar et al. 2007; Rendle et al.

2009) and choose the sigmoid function o (z) = == +6_T . Then
we have following loss function for the censored data
£Cen( 2 Xz|6 ZlOgO’ XJ|6) (xz|®)] . (3)

It can be shown that the modeling of event orders actually
approximates the concordance index (CI), one of the most
commonly used metrics for survival models:

=5 Y Yy

T T;>T;
Ve, =1

f(z;)>f(xq) )

where 1(z) is an indicator function. CI can be interpreted as
the fraction of all pairs of patients whose predicted survival
times are correctly ordered among all patients that can
actually be ordered.

Combined regression and ranking: We propose a unified
framework to combine both regression and ranking to model
time-to-event:

min (1—-a) Zloga [f(x%]1©) — f(x:]0)]

&)

+ aLobs (i, (Xz|®)) 9(0).
The unified framework has the advantage to simultaneously
achieve two important desiderata: accurate prediction of
event times, and good ranking of the relative risks of two
patients. The semi-parametric Cox model, which maximizes
the partial likelihood, approximates the ranking of relative
risks but often does not perform well in event time predic-
tion. Parametric survival models, which make rigorous sta-
tistical assumptions about the survival time, may not be flex-
ible enough to capture the complex event patterns. We aim
to use the unified framework to complement each other.

We directly model the survival time for patient i as
f(xi|©) = w'x; where x; = [z;1,%2,...,2;p]" is the
explanatory covariates vector for patient ¢. The observed loss
function can be any used in standard generalized regression
models. In particular, we consider Squared, Poisson, and
Log-normal loss functions:

2 % (ti - WTXi)2 Squared
Lons (i, f(xi]©)) =< 3, (ewrxi _ tinxi) Poisson
> 5 (log(t:) — WTXi)2 Log-normal

Modeling Multiple T2DM Complication Events via
Multi-task Learning

To capture and leverage the association between the risks of
the different T2DM complications, we formulate the com-
plications prediction task as a multi-task learning problem.
As shown in Fig. 2, we group the predictions of multiple

complications in consideration (e.g., retinopathy, neuropa-
thy and vascular disease) into different learning tasks. Each
task models only one complication and survival analysis is
applied to model the time-to-event of the complication. Then
we apply multi-task learning to capture the association be-
tween the different complications.

Multi-task learning (MTL) (Caruana 1997) aims to jointly
learn multiple tasks using a shared representation so that
knowledge obtained from one task can help the other
tasks. In particular, we adopt the task relation learning
based MTL approach (Zhang and Yang 2017) due to its
flexibility to incorporate prior information. Let W =
[W1,Wa, ..., W] px ar denote the matrix of coefficients for
all M of the complications. We aim to explore the hidden
association between the risks of T2DM complications. We
assume that the risk association is revealed in the structure
of the coefficient matrix W. Following (Zhang and Yeung
2010; Sun, Wang, and Hu 2015), we use the covariance ma-
trix of W to characterize T2DM complication risk associa-
tion. Specifically, we assume that the coefficient matrix W
follows a Matrix Variate Normal (MVN) distribution:

W ~ MVN(0,T, Q). (6)
The the first term 0 is a D x M matrix of zeros represent-
ing the mean of W. The second term I is a D x D matrix
representing the row-wise covariances of W. In this paper
we assume that rows of W are independent of each other.
In other words, the coefficients of different features in the
same target are not correlated. Then I' becomes a diagonal
matrix, and we can set I' = I. The third term Q isa M x M
symmetric positive definite matrix representing the column-
wise covariance of W. It is unknown and reflects the risk
association between multiple complications. Then we have

exp (—1tr [QT'WTW])
(27)MD/2|QD/2

Pr(W|0,1,Q) = @)
Further, domain knowledge about risk association is of-
ten available or partially available. In order to utilize avail-
able domain knowledge, we impose an Inverse-Wishart prior
distribution on €2
PI‘(Q) ~ IW(éQO, I/). (8)
The Inverse-Wishart distribution is a conjugate prior for the
multivariate variate distribution €2. €2 is a known symmet-
ric positive definite matrix that contains all prior knowledge
about the risk associations. § and v are two tuning parame-
ters. When domain knowledge on risk associations is avail-
able, the prior distribution can leverage the information and
help improve the estimation of 2. When domain knowledge
about risk associations is not available, we set 2 to be I.

The posterior probability of the parameters can be written
as

M 1
> o

k=1

Z Lobs (this Wy x;) — (1 — a) Zloga [w,j(xj - xi)} :|

k
Vegg=1 i

A1 A2 A3 n
+tr KEWTW-&- ?Qo> 9*1] + 5 log Q0+ 5 > [Iwkll?
k=1

©)

where tr(-) and | - | denote the trace and determinant
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Figure 2: Proposed framework for early prediction of T2DM complications. We aim to predict when a patient will
develop complications after the initial T2DM diagnosis. We group the predictions of multiple complications in con-
sideration (e.g., retinopathy, neuropathy and vascular disease) into different tasks where each task models only one
complication. Multi-task learning (MTL) is applied to capture the association between the different complications.

of a matrix; A\;, A2, A3 and 7 are tuning parameters; and
ngzl |[w||? is a regularization term to control the model
complexity. 1/Ny, is added to avoid the task imbalance prob-
lem when training instances are unbalanced among tasks
where IV}, is the number of instances in k-th task.

Parameter Estimation

Given time-to-event observations Y = {t¢j;,cx;} and co-
variates X, we need to estimate the model parameters
{W, Q} via solving the optimization problem in Equation
(9). However, log determination (log |€2|) is concave, mak-
ing the objective function non-convex. Therefore we adopt
an iterative algorithm to solve the problem. Within each it-
eration, the two blocks W' and (2 are updated alternatively.

Update W given 2:

Given €2, minimizing Equation (9) becomes minimizing the
following function

M
Z NL [a Z Lobs (tm',szi) -(1l-a) Zloga [W:(xj - xi)]
k=1 "'k i ek

Veps=1
A1
+ tr 3 2wTw

We use stochastic gradient descent to update the param-
eters. Stochastic gradient descent has been widely used for
many machine learning tasks (Bottou 2010). The main pro-
cess involves randomly scanning training instances and it-
eratively updating parameters. In each iteration, for compli-
cation k, we randomly sample an observed instance and its
comparison set (k,i, R¥)!, and we maximize O(©) using
the following update rule for ©: © = © — ¢ - 63&” , Where
€ is a learning rate. For complication k, given observed in-
stance and its comparison set (k, i, RF), the gradient with

ZHWHI

(10)

'In practice, for each observed instance 4 in task k we can ran-
domly sample a subset of R¥ when the total comparison set size
[RF| is large.

respect to wy, is

00 1 e~ Wi (x5 =)
8wk Nk ( a) z};k (1 + e—W; (x5 —x4) (X XJ)
JeER;

a‘CO S t iaWTxi
le’ b (k k ) +)\19,;1W+77wk.

aWk
Lobs (tri, Wy x; . .

The gradient w for different loss functions are
as follows:

— (t; — W x;) x5 Squared
OLobs (tri, Wy ;) EVZTX i) :

5 = (e X — ) X Poisson
W

— (log(tg;) — wj x;) x; Log-normal
Update €2 given W:
Given W, minimizing Equation (9) becomes

arg min tr {(%WTW + 22 Qo) Q- ] + % log |©2] (11)
Q
The last term log |€2| is a penalty on the complexity of €2,
and can be replaced with a constraint tr(€2) = 1 (Zhang and
Yeung 2010). Then above Equation (11) can be reformulated
as:

argmin tr [(/\JWTW + Az Qo> Q- }
Q
st. =0, tr(Q) =1

where 2 > 0 means that the matrix €2 is positive semidefi-
nite. Equation (12) has an analytical solution

(CFWIW 4 0
[(BWTW 4 3200)7]

(12)

Q=

13)

Experiments

This section presents an empirical evaluation of our model
using patient level data extracted from a large electronic
health record claims database.



Table 2: List of the five T2DM complications in this study.

T2DM Complication

(Al |

Example ICD codes

Retinopathy (RET)

eye disease caused by damage to the blood vessels in the
tissue at the back of the eye (retina)
Neuropathy (NEU) nerve damage most often affecting the legs and feet

25050, 25052, 24950, 24951,
36201-36207, E08311-E0839
25060, 25062, 24960, 24961

Nephrology (NEP) kidney disease characterized by hardening of the glomerulus 25040, 25042, 24940, 24941

Vascular Disease (VAS)

Hyperosmolar (HYPER) serious condition caused by high blood sugar levels

vascular diseases including peripheral vascular disease,
cardiovascular disease, and cerebrovascular diseases

25070, 25072, 24970, 24971,
E0851, E08621-E08622, E0859
25020, 25022, 24920, 24921,
E0800, E0900, E1100, E1300

Table 3: Data statistics and patient characteristics.

Complication # instances # observations  Female ratio  Average age (SD) 19-44 pct. 45-54 pct.  55—64 pct.
RET 5604 1868 35.03% 52.50 (8.58) 17.02% 33.21% 49.50%
NEU 11874 3958 36.97% 52.53 (8.59) 16.97% 33.01% 49.82%
NEP 4074 1358 37.02% 52.52 (8.91) 17.53% 31.44% 50.86%
VAS 2517 839 39.85% 53.17 (8.31) 15.06% 31.55% 53.12%

HYPER 651 217 36.41% 52.00 (8.90) 19.35% 32.72% 47.93%

a SD, standard deviation

Experimental setup and data

We conducted a retrospective cohort study using the
MarketScan Commercial Claims and Encounter (CCAE)
database from Truven Health. The data on the patients are
contributed by a selection of large employers, health plans,
and government and public organizations. We used a dataset
of deidentified patients between the years 2011 and 2015.
The patient cohort used in the study consisted of T2DM pa-
tients selected based on the following criteria:

I. The frequency ratio between Type 2 diabetes visits to
Type 1 diabetes visits is larger than 0.5; AND

II-a. The patient have two (2) or more Type 2 diabetes
records on different days; OR

II-b. The patient received insulin and/or antidiabetic medi-
cation.

Finally, patients who were under 19 years old or over 64
years old at first diagnosis of T2DM are removed.
We use following prediction variables:

o Patient demographics: Patient demographics include age,
gender and weight index. In addition to age as one continu-
ous variable, we also include three binary variables for age
intervals of 19-44, 45-54 and 55—64.

e ICD codes: We use the historical medical conditions fea-
tures encoded as International Classification of Disease
(ICD) codes. We use group ICD codes according to their
first three digits, and filter out ICDs appearing in fewer than
100 patients. As a result we have 359 ICD features.

We further removed patients with less than 20 ICD records.

Five common complications of T2DM, described in Table
2 are used in this study. Table 3 shows some basic statistics
of the patient cohort.

Evaluation protocol
We aim to answer the following two questions:

Question 1: How does the performance of our proposed
model (RankSvx) compare to traditional survival models
and regression models? To this end, we compare our pro-
posed model with the following baseline algorithms:

e Cox model (Cox 1972): Cox is the most widely used sur-
vival model and is a semi-parametric model as it does not
assume any distribution on the baseline function.

e Parametric survival models (Mittal et al. 2013) including
Weibull, Log-Logistic, and Log-normal. They make dif-
ferent assumptions about the baseline survival function.

e Regression models (i.e., squared regression, Poisson re-
gression, and Log-normal regression) that directly model
the event times but cannot leverage the censored data.

Question 2: How does the performance of the multi-task
learning approach compare to the single-task learning ap-
proach? To this end, we compare our proposed multi-task
version of the model (MTL-RankSvx) to our single-task
version (RankSvx).

We evaluate the models using the following metrics:
Concordance index (CI): CI is one of the most commonly
used metrics for survival models. It can be interpreted as the
fraction of all pairs of patients, the order of whose predicted
response matches the order of their observed response. CI is

defined as CT = '~ Zvct-i—l Ytiot; V()< f(ay;) Where

Niest 1S the number of complarable pairs in the test dataset.
Mean Absolute Error (MAE): MAE is defined as the aver-
age of the differences between predicted time values and the
actual observed event times MAE = £ >, [t; — &i.

Training and testing We randomly sample 67% of the co-
hort as training data, and we use the remaining 33% hold out
for testing. All the models are implemented with gradient
descent optimization and and we apply the Adam (Kingma
and Ba 2014) method to automatically adapt the step size



Table 4: Performance comparisons between proposed RankSvx model and previous approaches in terms of concordance
index (CI) in single-task learning setting.

Method RET NEU NEP VAS  HYPER avg
Cox 0.5552  0.6107 0.6027 0.6092 0.5524  0.5860
Survival Weibu}l . 0.5066 0.5207 0.5699 0.5399 0.5790 0.5432
Log-Logistic | 0.5108 0.5217 0.5821 0.5483 0.5833  0.5492
Log-normal | 0.5082 0.5241 0.5806 0.5497 0.5799  0.5485
Squared 0.5205 0.5217 0.5100 0.4830 0.5246 0.5120
Regression Poisson 0.5643 0.5244 0.5424 0.4510 0.4862 0.5137
Log-normal | 0.4764 0.5709 0.5332 0.5495 0.4481 0.5156
Squared 0.5569 0.5643 0.6164 0.5946 0.5974  0.5859
RankSvx Poisson 0.5650 0.6078 0.6361 0.6220 0.5687  0.5999
Log-normal | 0.5613 0.6026 0.6405 0.6111 0.6050 0.6041

Table 5: Performance comparisons between proposed RankSvx model and previous approaches in terms of mean abso-
lute error (MAE) in single-task learning setting. Errors are measured in months.

Method RET NEU NEP VAS HYPER avg
Cox 15.1983  16.6252 14.8260 13.0178 9.0817  13.7498
Survival Weibu}l . 6.6241  7.1144 69690  6.6553  6.6980  6.8122
Log-Logistic | 5.8822  6.7371  6.7977  6.5462  6.8298  6.5586
Log-normal | 5.5834  6.7408 6.7068  6.2985  5.8953  6.2450
Squared 6.4013  6.5058  6.4329  6.3967  7.8003  6.7074
Regression Poisson 6.3484  6.5252  6.6112  6.5280 6.3421 64710
Log-normal | 6.4669  6.3368 6.2769 6.1314 6.6093  6.3643
Squared 58519 63734  6.7831  6.5283  6.7692  6.4612
RankSvx Poisson 59522 64550  6.7879  6.5900 8.0567  6.7683
Log-normal | 5.5133  6.1209 6.7235  6.2654  5.9280  6.1102

during the parameter estimation procedures. We use grid
search for parameter tuning and report the best result for
each model.

Prior risk association 2, Note that our model can incor-
porate prior knowledge on complication association through
4. We construct associations leveraging the human dis-
ease network (Goh et al. 2007) which provides the Phi-
correlations between pairs of diseases. We aggregate the
Phi-correlations between pairs of ICD codes under pairs
of T2DM complications. This results in a €2 that repre-
sents our prior knowledge about the correlations between the
T2DM complications in our study.

Result Comparisons

In this subsection, we present the comparisons on the two
metrics (CI and MAE) between our proposed models and
the baseline methods. Note that CI measures relative risk
ranking and MAE measures event times prediction accuracy.

Comparing RankSvx with previous approaches Table
4 and Table 5 show the comparisons between our RankSvx
model with previous approaches in terms of CI and MAE
respectively. From Table 4 we can see that across most com-
plications RankSvx (with different loss functions) outper-
forms the Cox model, parametric survival models, and re-
gression models. Survival models perform better than re-
gression models as they can handle censored data. The semi-
parametric Cox model can achieve better CI performances
than their parametric peers. However, as shown in Table 5,
parametric survival models can achieve much better event

time prediction performance in terms of MAE. This is be-
cause the Cox model optimizes the partial likelihood ob-
jective, which depends only on the relative ordering of the
survival time of individuals but not on their actual values.
RankSvx model can simultaneously achieve best perfor-
mances in both metrics on average. In particular, RankSvx
model with Log-normal loss function performs the best.

Comparing MTL-RankSvx with RankSvx We next
compare the performance of multi-task learning against
single-task learning. As the RankSvx model with Log-
normal loss function performs the best, we compare MTL-
RankSvx with RankSvx using the Log-normal loss function.
We would expect MTL perform better when there are some
tasks, whose information is not enough to learn the model,
can benefit from the correlation from the other tasks. For
this consideration, for each task we respectively use 25%,
50%, 75% and 100% of dataset while keep other tasks un-
changed. We compare the performances of MTL-RankSvx
and of RankSvx in this setting. Table 6 shows the compar-
isons between MTL-RankSvx with STL-RankSvx. We can
see that MTL-RankSvx can improve STL-RankSvx in most
cases. Further, we observe that when the number of training
samples is small, the task can better improve its performance
through multi-task learning framework. For example, we can
observe more improvement of HYPER and VAS, which are
the two complications with fewest training samples.

Discussion While we observed that MTL-RankSvx can
improve STL-RankSvx in most cases, the improvements
seem not to be significant. We found that the learned task



Table 6: Comparisons between MTL-RankSvx and STL-
RankSvx. We compare the MTL and STL models by set-

ting different percentage of dataset in each task.

(a) concordance index (CI)

25% 50% 5% 100%
STL MTL | STL MTL | STL MTL | STL MTL
ERT 0.5468 0.5509 | 0.5603 0.5604 | 0.5623 0.5628 | 0.5613 0.5652
NEU |0.5798 0.5797 | 0.5895 0.5885 | 0.5968 0.5959 | 0.6026 0.6054
NEP 0.6069 0.6093 | 0.6262 0.6273 | 0.6343 0.6350 | 0.6405 0.6425
VAS 0.5821 0.5920 | 0.6015 0.6036 | 0.6104 0.6112 | 0.6111 0.6170
HYPER | 0.5406 0.5517 | 0.5977 0.5993 | 0.6010 0.6034 | 0.6050 0.6098
avg 0.5712  0.5767 | 0.5951 0.5958 | 0.6010 0.6016 | 0.6041 0.6080

(b) mean absolute error (MAE)

25% 50% 75% 100%
STL MTL | STL MTL | STL MTL | STL MTL
ERT 5.5161 5.5072 | 5.5254 5.5245 | 5.5161 5.5167 | 5.5133 5.5273
NEU |6.1282 6.1288 | 6.1294 6.1351 | 6.1465 6.1505 | 6.1209 6.1338
NEP 6.7388 6.7446 | 6.7110 6.7075 | 6.7009 6.7020 | 6.7235 6.7290
VAS 6.2387 6.2447 | 6.2561 6.2586 | 6.2537 6.2566 | 6.2654 6.2723
HYPER | 6.1777 6.1534 | 5.9211 5.9153 | 5.9351 5.9241 | 59280 5.9183
avg 6.1599 6.1557 | 6.1086 6.1082 | 6.1105 6.1100 | 6.1102 6.1161

association matrices were close to diagonal matrices, indi-
cating that the tasks did not have high association with each
other. Since the fundamental idea of multitask learning is to
leverage association among multiple tasks, it is expected that
MTL may not have significant improvement over STL when
the associations are not strong. The finding that the tasks did
not have high association with each other is a bit counter in-
tuitive. One reason could lie in the relatively short observa-
tion window of the dataset. It is possible that some preexist-
ing complications were treated as new onsets. In this case,
associations between different T2DM complications could
be reduced.

Related Work

From an applications perspective, our work falls into the
category of research that apply predictive analytics and
use EHRs to improve the practice of healthcare manage-
ment (Yadav et al. 2015). Building predictive models from
EHR records have attracted significant attention from both
academia and industry, and have been used in disease onset
prediction (Ng et al. 2016), patient stratification (Wang et al.
2015; Chen et al. 2016), hospital readmission prediction (He
et al. 2014), and mortality prediction (Tabak et al. 2013;
Nori et al. 2015). More recently, Razavian et al. (Razavian et
al. 2015) show that EHRs can be leveraged to predict T2DM
onset. Oh ef al. (Oh et al. 2016) applied EHRs to capture the
trajectories of T2DM patients and found that different trajec-
tories can lead to different risk patterns. To the best of our
knowledge, this paper presents the first study to investigate
the early prediction of T2DM complications from EHRs.
Technically, our work is related to survival analysis. Sur-
vival analysis (Cox 1972; Miller Jr 2011) is a class of widely
used statistical tools to model time-to-event. However tradi-
tional survival analysis models have several limitations. The
widely used Cox model (Cox 1972) does not directly model
the event probability; instead, it maximizes the partial like-

lihood objective, which depends only on the relative order-
ing of the survival time of individuals, not on their actual
values. It will require another cumbersome procedure to fit
a non-parametric survival function after the coefficients of
Cox model are determined for prediction purposes. There-
fore, Cox based models are limited for the task of predict-
ing the survival time for individual patients (Yu et al. 2011).
Parametric survival models (Lawless 1998) are another pop-
ular alternative. These methods assume that the baseline
hazard function follows some distribution, such as Expo-
nential, Weibull and Log-normal. However, the distribution
might not flexible enough to capture the complex event pat-
terns in real practice. As a result, there is a need for machine
learning based survival models (Wang, Li, and Reddy 2017)
which are free from rigorous statistical assumptions. An im-
portant distinction between our method and prior methods
is that our proposed approach has the advantage of simul-
taneously achieving two important desiderata: accurate pre-
diction of event times, as well as an accurate ranking of the
relative risks of two patients by simultaneously optimizing
both objective functions.

Our work is also related to multi-task
(MTL) (Caruana 1997), which aims to jointly learn multiple
tasks using a shared representation so that knowledge ob-
tained from one task can help other tasks. In particular, our
work falls into the category of task relation learning based
MTL approaches (Zhang and Yang 2017) due to its flexibil-
ity to incorporate prior information (Zhang and Yeung 2010;
Sun, Wang, and Hu 2015). There are some previous re-
search (Li et al. 2016) that apply multi-task learning for sur-
vival analysis, however, they are different from our work
in that they study single-task survival analysis through the
multi-task leaning framework by decomposing event time-
line into multiple time windows.

learning

Conclusion and Future Work

In this paper, we proposed a novel survival analysis ap-
proach, in which models were learned from historical EHR
records, to predict when a patient will develop complica-
tions after being diagnosed with T2DM. The proposed sur-
vival approach has the advantage to achieve two impor-
tant metrics: accurate prediction of event times and good
ranking of the relative risks of two patients. Moreover, to
better capture the correlations of time-to-events of multi-
ple complications, we further developed a multi-task ver-
sion of the survival model. Finally, extensive experiments
on a T2DM patient dataset extracted from a large healthcare
claims database validated the performance of our new pro-
posed survival analysis and demonstrated the effectiveness
of the multi-task framework.

There are a number of interesting future research direc-
tions. First, we only used basic demographic information
and static ICD codes in our evaluation. Incorporating more
features or new feature representations can potentially im-
prove prediction performance. Second, it is important to not
only predict complication events but also to analyze and
identify the important associated risk factors. Finally, we are
also interested in adapting our models to other chronic dis-
eases and other types of electronic health record data.
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